算法-动态规划-编辑距离
算法-动态规划-编辑距离
1 题目概述
1.1 题目出处
https://leetcode.cn/problems/edit-distance/description/?envType=study-plan-v2&envId=top-interview-150
1.2 题目描述
2 动态规划
2.1 思路
dp[i][j] 表示 word1[0,i) 变换为 word2[0,j)的最少步数,那么转移表达式:
- i和j上的字符相同时,则dp[i][j] = dp[i-1][j-1],即这一步不需要做调整
- i和j上的字符不同时,dp[i][j] = min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j]) + 1,即当前要从i转移到j,有三种情况:
- i-1 j-1上的字符相同,那么直接现在把i字符替换为j即可
- i可以直接转为j-1,那么现在就增加一个j字符即可
- i-1可以直接转为j,那么现在就把i字符删除即可
2.2 代码
class Solution {
public int minDistance(String word1, String word2) {
// dp[i][j] 表示 word1[0,i) 变换为 word2[0,j)的最少步数
int m = word1.length(), n = word2.length();
int[][] dp = new int[m+1][n+1];
// 初始化,word2长度为0时,word1的所有字符串删除来构成即可
for (int i = 0; i <= m; i++) {
dp[i][0] = i;
}
// 初始化,word1长度为0时,word2的所有字符串增加来构成即可
for (int j = 0; j <= n; j++) {
dp[0][j] = j;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1.charAt(i-1) == word2.charAt(j-1)) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = Math.min(Math.min(dp[i-1][j-1], dp[i][j-1]), dp[i-1][j]) + 1;
}
}
}
return dp[m][n];
}
}
2.3 时间复杂度
O(m * n)
2.4 空间复杂度
O(m * n)
3 DFS
3.1 思路
dp[i][j] 表示 word1[0,i) 变换为 word2[0,j)的最少步数,那么转移表达式:
- i和j上的字符相同时,则dp[i][j] = dp[i-1][j-1],即这一步不需要做调整
- i和j上的字符不同时,dp[i][j] = min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j]) + 1,即当前要从i转移到j,有三种情况:
- i-1 j-1上的字符相同,那么直接现在把i字符替换为j即可
- i可以直接转为j-1,那么现在就增加一个j字符即可
- i-1可以直接转为j,那么现在就把i字符删除即可
3.2 代码
class Solution {
int[][] distances = null;
public int minDistance(String word1, String word2) {
distances = new int[word1.length()+1][word2.length()+1];
for (int i = 0; i <= word1.length(); i++) {
for (int j = 0; j <= word2.length(); j++) {
distances[i][j] = -1;
}
}
return dfs(word1, word2, 0, 0);
}
private int dfs(String word1, String word2, int i, int j) {
if (distances[i][j] > -1) {
return distances[i][j];
}
if (i == word1.length()) {
// word1全增加
distances[i][j] = word2.length() - j;
return distances[i][j];
}
if (j == word2.length()) {
// word1全删除
distances[i][j] = word1.length() - i;
return distances[i][j];
}
if (word1.charAt(i) == word2.charAt(j)) {
// 当前字符相同,跳过,继续处理下一个
distances[i][j] = dfs(word1, word2, i+1, j+1);
return distances[i][j];
}
distances[i][j] = Math.min(Math.min(dfs(word1, word2, i, j+1), dfs(word1, word2, i+1, j)), dfs(word1, word2, i+1, j+1)) + 1;
// 当前字符不同
return distances[i][j];
}
}
3.3 时间复杂度
O(m * n)
3.4 空间复杂度
O(m * n)
参考文档
- https://leetcode.cn/problems/edit-distance/solutions/763112/bao-li-dfs-ji-yi-you-hua-dfs-zhuang-tai-i9rut/?envType=study-plan-v2&envId=top-interview-150