CAS与Volatile
CAS
全称是Compare And Swap 即比较和交换,是乐观锁的一种实现
一个取钱的例子:
public class TestAccount {
public static void main(String[] args) {
Account account = new AccountCas(10000);
Account.demo(account);
}
}
class AccountCas implements Account {
private AtomicInteger balance;
public AccountCas(int balance) {
this.balance = new AtomicInteger(balance);
}
@Override
public Integer getBalance() {
return balance.get();
}
@Override
public void withdraw(Integer amount) {
/*while(true) {
// 获取余额的最新值
int prev = balance.get();
// 要修改的余额
int next = prev - amount;
// 真正修改
if(balance.compareAndSet(prev, next)) {
break;
}
}*/
balance.getAndAdd(-1 * amount);
}
}
class AccountUnsafe implements Account {
private Integer balance;
public AccountUnsafe(Integer balance) {
this.balance = balance;
}
@Override
public Integer getBalance() {
synchronized (this) {
return this.balance;
}
}
@Override
public void withdraw(Integer amount) {
synchronized (this) {
this.balance -= amount;
}
}
}
interface Account {
// 获取余额
Integer getBalance();
// 取款
void withdraw(Integer amount);
/**
* 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
* 如果初始余额为 10000 那么正确的结果应当是 0
*/
static void demo(Account account) {
List<Thread> ts = new ArrayList<>();
for (int i = 0; i < 1000; i++) {
ts.add(new Thread(() -> {
account.withdraw(10);
}));
}
long start = System.nanoTime();
ts.forEach(Thread::start);
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
long end = System.nanoTime();
System.out.println(account.getBalance()
+ " cost: " + (end-start)/1000_000 + " ms");
}
}
volatile
获取共享变量时,为了保证该变量的可见性,需要使用 volatile 修饰。
它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取
它的值,线程操作 volatile 变量都是直接操作主存。即一个线程对 volatile 变量的修改,对另一个线程可见。
- CAS 必须借助 volatile 才能读取到共享变量的最新值来实现【比较并交换】的效果
cas的特点
- 结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景下。
- CAS 是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再重试呗。
- synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁,你们才有机会。
- CAS 体现的是无锁并发、无阻塞并发,因为没有使用 synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一,但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响
为什么无锁效率高
- 无锁情况下,即使重试失败,线程始终在高速运行,没有停歇,而synchronized 会让线程在没有获得锁的时候,发生上下文切换,进入阻塞。打个比喻
- 线程就好像高速跑道上的赛车,高速运行时,速度超快,一旦发生上下文切换,就好比赛车要减速、熄火,等被唤醒又得重新打火、启动、加速… 恢复到高速运行,代价比较大
- 但无锁情况下,因为线程要保持运行,需要额外 CPU 的支持,CPU 在这里就好比高速跑道,没有额外的跑道,线程想高速运行也无从谈起,虽然不会进入阻塞,但由于没有分到时间片,仍然会进入可运行状态,还是会导致上下文切换。