微积分(一)笔记1
前言:这是暑假在B站温习微积分找到的教程,自己做了一些笔记(有时间就翻译)和习题(没有答案,自己做的不保证对),现记录如下。
神秘学校 微积分一 (The School You Don’t Know Which, CASE)
实数理论
omit…
数列极限的定义与性质
Def Let
a
n
(
n
∈
N
)
\;a_n(n\in N)
an(n∈N) be a sequence in
R
R
R and
L
∈
R
L\in R
L∈R, we say
a
n
a_n
an converge to
L
(
a
s
n
→
∞
)
L\,(as \;n\rightarrow\infty)
L(asn→∞) if
∀
ϵ
>
0
∃
N
1
∈
N
s
.
t
.
[
n
≥
N
1
⟹
∣
a
n
−
L
∣
<
ϵ
]
\forall \epsilon>0 \;\exist N_1\in N\;s.t.\left[n\geq N_1\implies |a_n-L|<\epsilon\right]
∀ϵ>0∃N1∈Ns.t.[n≥N1⟹∣an−L∣<ϵ]
Terminology: If such
L
L
L exists (doesn’t exist), we call it the limit of
a
n
a_n
an and we call
a
n
(
n
∈
N
)
\;a_n(n\in N)
an(n∈N) a convergent(divergent) sequence.
Notation:
lim
n
→
∞
a
n
=
L
\lim_{n \to \infty}a_n = L
n→∞liman=L
Some generalized notations:
lim
n
→
∞
a
n
=
∞
(
−
∞
)
⟺
D
e
f
∀
M
>
0
∃
N
1
∈
N
s
.
t
.
[
n
≥
N
1
⟹
a
n
≥
M
(
a
n
≤
M
)
]
\lim_{n \to \infty}a_n = \infty (-\infty) \overset{Def}\Longleftrightarrow \forall M>0 \exist N_1\in N\;s.t. \left[n \geq N_1 \implies a_n \geq M(a_n \leq M)\right]
n→∞liman=∞(−∞)⟺Def∀M>0∃N1∈Ns.t.[n≥N1⟹an≥M(an≤M)]
Ex.
(1) Show that if
lim
n
→
∞
a
n
=
L
\lim\limits_{n\rightarrow \infty}a_n = L
n→∞liman=L and
lim
n
→
∞
a
n
=
M
\lim\limits_{n\rightarrow \infty}a_n = M
n→∞liman=M then
L
=
M
L=M
L=M.
Proof: Suppose
L
≠
M
L\not=M
L=M and
L
>
M
L>M
L>M and let
d
=
L
−
M
>
0
d = L-M>0
d=L−M>0.
By definition we have
∀
ϵ
>
0
∃
N
1
,
N
2
∈
N
[
n
≥
N
1
⟹
∣
a
n
−
L
∣
<
ϵ
\forall \epsilon>0 \;\exist N_1,N_2\in N [n\geq N_1\implies |a_n-L|<\epsilon
∀ϵ>0∃N1,N2∈N[n≥N1⟹∣an−L∣<ϵ and
n
≥
N
2
⟹
∣
a
n
−
M
∣
<
ϵ
]
n\geq N_2 \implies |a_n-M|<\epsilon]
n≥N2⟹∣an−M∣<ϵ]
Let
N
3
=
max
{
N
1
,
N
2
}
,
n
≥
N
3
⟹
N_3 = \max\left\{N_1,N_2 \right\}, n\geq N_3 \implies
N3=max{N1,N2},n≥N3⟹
{
∣
a
n
−
L
∣
<
ϵ
∣
a
n
−
M
∣
<
ϵ
h
o
l
d
s
⟹
∣
a
n
−
L
−
a
n
+
M
∣
≤
∣
a
n
−
L
∣
+
∣
a
n
−
M
∣
<
2
ϵ
<
d
⟹
∣
M
−
L
∣
<
d
=
L
−
M
∗
\left\{ \begin{aligned} |a_n-L|<\epsilon \\ |a_n-M|<\epsilon \end{aligned} \quad {holds} \implies |a_n-L-a_n+M|\leq|a_n-L|+ |a_n-M|<2\epsilon<d \right. \\ \implies |M-L|<d = L-M\qquad*
{∣an−L∣<ϵ∣an−M∣<ϵholds⟹∣an−L−an+M∣≤∣an−L∣+∣an−M∣<2ϵ<d⟹∣M−L∣<d=L−M∗
This leads to a contradiction, so original proposition is proved.#
(2) Show
a
n
(
n
∈
N
∗
)
a_n(n\in N^*)
an(n∈N∗) is convergent
⟹
{
a
n
∣
n
∈
N
∗
}
\implies \left\{a_n|n\in N^*\right\}
⟹{an∣n∈N∗} is bounded.
Proof: Suppose
a
n
a_n
an converges to
L
L
L.
∀
ϵ
>
0
∃
N
∈
N
∗
s
.
t
.
n
≥
N
⟹
∣
a
n
−
L
∣
<
ϵ
⟹
L
−
ϵ
<
a
n
<
L
+
ϵ
\forall \epsilon >0\;\exist N\in N^* \;s.t. \;n\geq N \implies |a_n-L|<\epsilon\implies L-\epsilon<a_n<L+\epsilon
∀ϵ>0∃N∈N∗s.t.n≥N⟹∣an−L∣<ϵ⟹L−ϵ<an<L+ϵ
Let
M
1
=
max
{
∣
L
−
ϵ
∣
,
∣
L
+
ϵ
∣
}
⟹
∣
a
n
∣
<
M
1
(
n
≥
N
)
M_1 = \max\{|L-\epsilon|,|L+\epsilon|\}\implies |a_n|<M_1(n\geq N)
M1=max{∣L−ϵ∣,∣L+ϵ∣}⟹∣an∣<M1(n≥N),and
M
2
=
max
n
<
N
{
a
n
}
,
M
=
max
{
M
1
,
M
2
}
⟹
∣
a
n
∣
<
M
M_2 =\max\limits_{n<N}\{a_n\},M = \max\{M_1,M_2\}\implies |a_n|<M
M2=n<Nmax{an},M=max{M1,M2}⟹∣an∣<M #
(3) Show that if
a
n
≤
b
n
a_n\leq b_n
an≤bn for all
n
∈
N
∗
n\in N^*
n∈N∗ and
lim
n
→
∞
a
n
=
L
,
lim
n
→
∞
b
n
=
M
\lim\limits_{n\to\infty}a_n=L,\lim\limits_{n\to\infty}b_n=M
n→∞liman=L,n→∞limbn=M,then
L
≤
M
L\leq M
L≤M.
(Q: What if “
≤
\leq
≤” is replaced by “
<
<
<”? A: The property doesn’t hold. Consider
a
n
=
1
n
2
+
2
a_n=\frac{1}{n^2+2}
an=n2+21 and
b
n
=
1
n
2
+
1
b_n=\frac{1}{n^2+1}
bn=n2+11)
Proof. Suppose
L
>
M
L>M
L>M. We have
∀
ϵ
>
0
∃
N
1
,
N
2
∈
N
∗
s
.
t
.
n
>
max
{
N
1
,
N
2
}
⟹
{
∣
a
n
−
L
∣
<
ϵ
∣
b
n
−
M
∣
<
ϵ
⟹
L
−
M
=
∣
M
−
L
∣
<
∣
a
n
−
b
n
+
M
−
L
∣
=
∣
(
a
n
−
L
)
−
(
b
n
−
M
)
∣
<
∣
a
n
−
L
∣
+
∣
b
n
−
M
∣
<
2
ϵ
\forall \epsilon>0\;\exists N_1,N_2\in N^* \;s.t.\;n>\max\{N_1,N_2\}\implies \begin{cases}|a_n-L|<\epsilon\\|b_n-M|<\epsilon\end{cases}\implies L-M=|M-L|<|a_n-b_n+M-L|=|(a_n-L)-(b_n-M)|<|a_n-L|+|b_n-M|<2\epsilon
∀ϵ>0∃N1,N2∈N∗s.t.n>max{N1,N2}⟹{∣an−L∣<ϵ∣bn−M∣<ϵ⟹L−M=∣M−L∣<∣an−bn+M−L∣=∣(an−L)−(bn−M)∣<∣an−L∣+∣bn−M∣<2ϵ
Let
ϵ
=
L
−
M
3
⟹
2
(
L
−
M
)
3
>
L
−
M
∗
\epsilon = \frac{L-M}{3}\implies \frac{2(L-M)}{3}>L-M \quad*
ϵ=3L−M⟹32(L−M)>L−M∗
This leads to a contradiction, original property holds.
Remark: Changing or removing finitely many terms in
a
n
a_n
an doesn’t effct
a
n
(
n
∈
N
∗
)
a_n(n\in N^*)
an(n∈N∗)'s being convergent (and it’s limit) / divergent.
Propsition:If
lim
n
→
∞
a
n
=
L
\lim\limits_{n\rightarrow\infty}a_n=L
n→∞liman=L and
lim
n
→
∞
b
n
=
M
\lim\limits_{n\rightarrow\infty}b_n=M
n→∞limbn=M then
(1)
lim
n
→
∞
(
a
n
±
b
n
)
=
L
±
M
\lim\limits_{n\rightarrow\infty}(a_n\pm b_n)=L\pm M
n→∞lim(an±bn)=L±M;
(2)
lim
n
→
∞
(
a
n
b
n
)
=
L
M
\lim\limits_{n\rightarrow\infty}(a_n b_n)=LM
n→∞lim(anbn)=LM
(3) If
M
≠
0
M\not=0
M=0,then
b
n
≠
0
b_n\not=0
bn=0 for all but finitely many n, and
lim
n
→
∞
a
n
b
n
=
L
M
\lim\limits_{n\rightarrow \infty}\frac{a_n}{b_n} = \frac{L}{M}
n→∞limbnan=ML
(如果
M
≠
0
M\not=0
M=0 那么只有有限多项
b
n
=
0
b_n=0
bn=0,并且
lim
n
→
∞
a
n
b
n
=
L
M
\lim\limits_{n\rightarrow \infty}\frac{a_n}{b_n} = \frac{L}{M}
n→∞limbnan=ML)
Example. If
a
>
1
a>1
a>1, then
lim
n
→
∞
1
a
n
=
0
\lim\limits_{n\rightarrow\infty}\frac{1}{a^n}=0
n→∞liman1=0
1
a
n
=
1
(
1
+
(
a
−
1
)
)
n
≤
1
1
+
n
b
\frac{1}{a^n} = \frac{1}{(1+(a-1))^n}\leq\frac{1}{1+nb}
an1=(1+(a−1))n1≤1+nb1
Ex.
If
a
n
≤
c
n
≤
b
n
(
n
∈
N
∗
)
a_n\leq c_n\leq b_n(n\in N^*)
an≤cn≤bn(n∈N∗),
lim
n
→
∞
a
n
=
L
\lim\limits_{n\rightarrow\infty}a_n=L
n→∞liman=L and
lim
n
→
∞
b
n
=
L
\lim\limits_{n\rightarrow\infty}b_n=L
n→∞limbn=L, then
lim
n
→
∞
c
n
=
L
\lim\limits_{n\rightarrow\infty}c_n=L
n→∞limcn=L
Proof.
∀
ϵ
>
0
∃
N
∈
N
∗
s
.
t
.
n
≥
N
⟹
{
∣
a
n
−
L
∣
<
ϵ
∣
b
n
−
L
∣
<
ϵ
⟹
{
c
n
≤
b
n
<
L
+
ϵ
c
n
>
a
n
>
L
−
ϵ
⟹
∣
c
n
−
L
∣
<
ϵ
⟹
lim
n
→
∞
c
n
=
L
\forall\epsilon>0\;\exist N\in N^*\;s.t.\;n\geq N\implies\begin{cases}|a_n-L|<\epsilon\\|b_n-L|<\epsilon\end{cases} \implies\begin{cases}c_n\leq b_n<L+\epsilon\\c_n>a_n>L-\epsilon\end{cases}\\\implies|c_n-L|<\epsilon\implies \lim\limits_{n\rightarrow\infty}c_n=L
∀ϵ>0∃N∈N∗s.t.n≥N⟹{∣an−L∣<ϵ∣bn−L∣<ϵ⟹{cn≤bn<L+ϵcn>an>L−ϵ⟹∣cn−L∣<ϵ⟹n→∞limcn=L #
单调数列的收敛性
Def A seq.
a
n
(
n
∈
N
∗
)
a_n(n\in N^*)
an(n∈N∗) in
R
R
R is
(1) nondecreasingly monotone(单调非减) / increasing if
a
n
≤
a
n
+
1
a_n\leq a_{n+1}
an≤an+1 for all
n
∈
N
∗
n\in N^*
n∈N∗, denoted
a
n
↗
a_n\nearrow
an↗.
(resp. nonincreasingly monotone(单调非增) / decreasingly if
a
n
≥
a
n
+
1
a_n\geq a_{n+1}
an≥an+1 for all
n
∈
N
∗
n\in N^*
n∈N∗, denoted
a
n
↘
a_n\searrow
an↘)
(2) strictly increasingly (resp. strictly decreasing) if
∀
n
∈
N
∗
[
a
n
<
(
r
e
s
p
.
>
)
a
n
+
1
]
\forall n\in N^*\;[a_n<(resp.>)a_{n+1}]
∀n∈N∗[an<(resp.>)an+1]
denoted
a
n
↗
↗
(
a_n\nearrow\nearrow(
an↗↗(
a
n
↘
↘
a_n\searrow\searrow
an↘↘).
Theorem. Boundness from above +
↗
\nearrow
↗
⟹
\implies
⟹ convergence