PyTorch多GPU训练时同步梯度是mean还是sum?

PyTorch 通过两种方式可以进行多GPU训练: DataParallel, DistributedDataParallel. 当使用DataParallel的时候, 梯度的计算结果和在单卡上跑是一样的, 对每个数据计算出来的梯度进行累加. 当使用DistributedDataParallel的时候, 每个卡单独计算梯度, 然后多卡的梯度再进行平均.
下面是实验验证:

DataParallel

import torch
import os
import torch.nn as nn

def main():
    model = nn.Linear(2, 3).cuda()
    model = torch.nn.DataParallel(model, device_ids=[0, 1])
    input = torch.rand(2, 2)
    labels = torch.tensor([[1, 0, 0], [0, 1, 0]]).cuda()
    (model(input) * labels).sum().backward()
    print('input', input)
    print([p.grad for p in model.parameters()])


if __name__=="__main__":
    main()

执行CUDA_VISIBLE_DEVICES=0,1 python t.py可以看到输出, 代码中对两个样本分别求梯度, 梯度等于样本的值, DataParallel把两个样本的梯度累加起来在不同GPU中同步.

input tensor([[0.4362, 0.4574],
        [0.2052, 0.2362]])
[tensor([[0.4363, 0.4573],
        [0.2052, 0.2362],
        [0.0000, 0.0000]], device='cuda:0'), tensor([1., 1., 0.], device='cuda:0')]

DistributedDataParallel

import torch
import os
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP


def example(rank, world_size):
    # create default process group
    dist.init_process_group("gloo", rank=rank, world_size=world_size)
    # create local model
    model = nn.Linear(2, 3).to(rank)
    print('model param', 'rank', rank, [p for p in model.parameters()])
    # construct DDP model
    ddp_model = DDP(model, device_ids=[rank])
    print('ddp model param', 'rank', rank, [p for p in ddp_model.parameters()])
    # forward pass
    input = torch.randn(1, 2).to(rank)
    outputs = ddp_model(input)
    labels = torch.randn(1, 3).to(rank) * 0
    labels[0, rank] = 1
    # backward pass
    (outputs * labels).sum().backward()
    print('rank', rank, 'grad', [p.grad for p in ddp_model.parameters()])
    print('rank', rank, 'input', input, 'outputs', outputs)
    print('rank', rank, 'labels', labels)
    # update parameters
    optimizer.step()

def main():
    world_size = 2
    mp.spawn(example,
        args=(world_size,),
        nprocs=world_size,
        join=True)

if __name__=="__main__":
    # Environment variables which need to be
    # set when using c10d's default "env"
    # initialization mode.
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29504"
    main()

执行CUDA_VISIBLE_DEVICES=0,1 python t1.py可以看到输出, 代码中对两个样本分别求梯度, 梯度等于样本的值, 最终的梯度是各个GPU的梯度的平均.

model param rank 0 [Parameter containing:
tensor([[-0.4819,  0.0253],
        [ 0.0858,  0.2256],
        [ 0.5614,  0.2702]], device='cuda:0', requires_grad=True), Parameter containing:
tensor([-0.0090,  0.4461, -0.3493], device='cuda:0', requires_grad=True)]
model param rank 1 [Parameter containing:
tensor([[-0.3737,  0.3062],
        [ 0.6450,  0.2930],
        [-0.2422,  0.2089]], device='cuda:1', requires_grad=True), Parameter containing:
tensor([-0.5868,  0.2106, -0.4461], device='cuda:1', requires_grad=True)]
ddp model param rank 1 [Parameter containing:
tensor([[-0.4819,  0.0253],
        [ 0.0858,  0.2256],
        [ 0.5614,  0.2702]], device='cuda:1', requires_grad=True), Parameter containing:
tensor([-0.0090,  0.4461, -0.3493], device='cuda:1', requires_grad=True)]
ddp model param rank 0 [Parameter containing:
tensor([[-0.4819,  0.0253],
        [ 0.0858,  0.2256],
        [ 0.5614,  0.2702]], device='cuda:0', requires_grad=True), Parameter containing:
tensor([-0.0090,  0.4461, -0.3493], device='cuda:0', requires_grad=True)]
rank 1 grad [tensor([[ 0.2605,  0.1631],
        [-0.0934, -0.5308],
        [ 0.0000,  0.0000]], device='cuda:1'), tensor([0.5000, 0.5000, 0.0000], device='cuda:1')]
rank 0 grad [tensor([[ 0.2605,  0.1631],
        [-0.0934, -0.5308],
        [ 0.0000,  0.0000]], device='cuda:0'), tensor([0.5000, 0.5000, 0.0000], device='cuda:0')]
rank 1 input tensor([[-0.1868, -1.0617]], device='cuda:1') outputs tensor([[ 0.0542,  0.1906, -0.7411]], device='cuda:1',
       grad_fn=<AddmmBackward0>)
rank 0 input tensor([[0.5209, 0.3261]], device='cuda:0') outputs tensor([[-0.2518,  0.5644,  0.0314]], device='cuda:0',
       grad_fn=<AddmmBackward0>)
rank 1 labels tensor([[-0., 1., -0.]], device='cuda:1')
rank 0 labels tensor([[1., 0., -0.]], device='cuda:0')