【深度学习】LSTM/CNN+LSTM实现图片分类
毕设实验设计部分:作为对照的单LSTM模型实现模型以及CNN+LSTM模型实现
注意:一般LSTM单模型不会用来实现图片分类,只做教学用途。
LSTM
主要需要注意的是,LSTM单元输入的是(num_timesteps, num_features)
在X = X.reshape(X.shape[0],X.shape[1]*X.shape[2],-1)
将图片尺寸转换为可以输入的尺寸
完整代码
import tensorflow as tf
import pathlib
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import os
import numpy as np
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
import cv2
'''
使用图片数据作为输入数据集,使用lstm作为网络模型
'''
# 图片文件夹
DATA_PATH = os.path.join() # 自行进行填充
# 定义类别名称
actions = np.array([])# 自行进行填充
no_sequences = 30
#
sequence_length = 30
images_path = []
images,labels = [],[]
for action in actions:
for sequence in range(no_sequences):
for frame_num in range(sequence_length):
img_path = os.path.join(DATA_PATH,action,str(sequence),"{}.jpg".format(frame_num))
print(img_path)
# 读入文件路径
img = cv2.imread(img_path)
# 改变输入尺寸
resized_image = cv2.resize(img, (180, 180))
images.append(resized_image)
# images_path.append(img_path)
labels.append(action)
print(len(images),len(labels),)
for i in range(len(labels)):
if labels[i]=='':
labels[i]= 0
elif labels[i] == '':
labels[i] = 1
elif labels[i]=='':
labels[i] =2
elif labels[i]=='':
labels[i]=3
elif labels[i]=='':
labels[i] = 4
X = np.array(images)
print(X.shape)
# 转换输入尺寸,以进入rnn进行训练
X = X.reshape(X.shape[0],X.shape[1]*X.shape[2],-1)
Y = to_categorical(labels)
print(Y.shape)
print(X.shape)
X_train,X_test,y_train,y_test = train_test_split(X,Y,test_size=0.2)
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM,Dense
import tensorflow as tf
def setupModel():
model = Sequential()
model.add(LSTM(64,input_shape=(180*180,3),return_sequences=True,activation='relu'))
model.add(LSTM(128,return_sequences=True,activation='relu'))
model.add(LSTM(64,return_sequences=False,activation='relu'))
model.add(Dense(64,activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(5, activation='softmax'))
return model
model = setupModel()
model.compile(
optimizer='adam',
loss = 'categorical_crossentropy',
metrics = ['accuracy']
)
history = model.fit(X_train,y_train,epochs=50)
实现截图
在我的实现中,代码是可以跑通的。
CNN-LSTM
这里直接给出模型构建,详细的图片分类流程可以参考https://www.tensorflow.org/tutorials/images/classification
实现代码
# CNN-LSTM模型
model = Sequential([
layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Reshape((-1, 16)),
layers.LSTM(64, return_sequences=True),
layers.LSTM(32),
layers.Dense(num_classes)
])