# 1、读取ex1文件(read_csv)
pd.read_csv(Path('../源代码/examples/ex1.csv'))"""
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
"""-------------------------------------------------------------# 1-1、读取文件(read_table)
pd.read_table(Path('../源代码/examples/ex1.csv'))"""
a,b,c,d,message
0 1,2,3,4,hello
1 5,6,7,8,world
2 9,10,11,12,foo
"""-------------------------------------------------------------# 1-2、读取文件,分隔符(sep)
pd.read_table(Path('../源代码/examples/ex1.csv'),sep=',')"""
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
"""-------------------------------------------------------------# 4、读取ex3.txt文件(read_csv)
pd.read_csv(Path('../源代码/examples/ex3.txt'))"""
A B C
0 aaa -0.264438 -1.026059 -0.619500
1 bbb 0.927272 0.302904 -0.032399
2 ccc -0.264273 -0.386314 -0.217601
3 ddd -0.871858 -0.348382 1.100491
"""-------------------------------------------------------------# 4-1、用正则表达式,作为分隔符,【正则表达式】\s+ 意思就是至少有一个空白字符存在
pd.read_csv(Path('../源代码/examples/ex3.txt'),sep='\s+')"""
A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491
"""
4、设置列名(header、names)
# 2、读取ex2文件(read_csv),没有列名
pd.read_csv(Path('../源代码/examples/ex2.csv'))"""
1 2 3 4 hello
0 5 6 7 8 world
1 9 10 11 12 foo
"""-------------------------------------------------------------# 2-1、默认列名(header=None)
pd.read_csv(Path('../源代码/examples/ex2.csv'),header=None)"""
0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
"""-------------------------------------------------------------# 2-2、指定列名(names)
pd.read_csv(Path('../源代码/examples/ex2.csv'),names=['a','b','c','d','message'])"""
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
"""-------------------------------------------------------------# 2-3、列名变成行索引(index_col)
pd.read_csv(Path('../源代码/examples/ex2.csv'),names=['a','b','c','d','message'],index_col='message')"""
a b c d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12
"""
5、跳行(skiprows)
# 5、读取ex4.txt文件(read_csv)
pd.read_csv(Path('../源代码/examples/ex4.csv'))"""
# hey!
a b c d message
# just wanted to make things for you NaN NaN NaN NaN
# who reads CSV files with computers anyway NaN NaN NaN
1 2 3 4 hello
5 6 7 8 world
9 10 11 12 foo
"""-------------------------------------------------------------# 5-1、跳过第1、3、4行(skiprows)
pd.read_csv(Path('../源代码/examples/ex4.csv'),skiprows=[0,2,3])"""
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
"""
6、处理缺失值(na_values)
# 6、读取ex5.txt文件(read_csv)
pd.read_csv(Path('../源代码/examples/ex5.csv'))"""
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo
"""-------------------------------------------------------------# 6-1、判断是否为空(isnull)
pd.isnull(pd.read_csv(Path('../源代码/examples/ex5.csv')))"""
something a b c d message
0 False False False False False True
1 False False False True False False
2 False False False False False False
"""-------------------------------------------------------------# 6-2、指定缺失值(na_values)
pd.read_csv(Path('../源代码/examples/ex5.csv'),na_values={'something':['one']})"""
something a b c d message
0 NaN 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo
"""