使用pytorch搭建ResNet并基于迁移学习训练
这里的迁移学习方法是载入预训练权重的方法
net = resnet34()
# load pretrain weights
# download url: https://download.pytorch.org/models/resnet34-333f7ec4.pth
model_weight_path = "./resnet34-pre.pth"
assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
# for param in net.parameters():
# param.requires_grad = False
# change fc layer structure
in_channel = net.fc.in_features
net.fc = nn.Linear(in_channel, 5)
这里的迁移学习方法是载入预训练权重的方法net = resnet34():注意这里没有传入参数num_classes 因为后面才载入所有的参数,会覆盖我们设定的classes
# change fc layer structure
in_channel = net.fc.in_features # fc 为全连接层 in_features为特征矩阵的深度
net.fc = nn.Linear(in_channel, 5)